Summary for APGP

	Arithmetic Progression (AP)	Geometric Progression (GP)
Formula for term u_n	$u_n = a + (n-1)d$	$u_n = ar^{n-1}$
Formula for sum S_n	$S_n = \frac{n}{2} (2a + (n-1)d)$ $= \frac{n}{2} (a+l)$	$S_n = \frac{a(1-r^n)}{1-r} \text{ or } \frac{a(r^n-1)}{r-1}$
Is sum (series) convergent?	$n \to \infty$, $S_n \to \infty$ or $-\infty$ [Except for special case when $d = 0$.] Arithmetic series is not convergent.	$ r < 1 \Leftrightarrow S_{\infty} = \frac{a}{1-r}$ exist \Leftrightarrow Geometric series is convergent
Show $\{u_n\}$ follow AP or GP	Show $u_n - u_{n-1} = d$ where d is independent of n .	Show $\frac{u_n}{u_{n-1}} = r$ where r is independent of n .
Special Cases	 When d = 0, AP is a constant sequence {a, a, a,}. When d > 0, AP is an increasing sequence. When d < 0, AP is a decreasing sequence. 	 When r=1, GP is a constant sequence {a, a, a,}. When r>0, the terms are of the same sign. When r<0, the signs of the terms are alternating.

Word Problem

- 1. Mr Lee took up a loan of \$10000 on 1^{st} January 2015 from a bank and repays the bank x in the middle of every month starting from the month the loan is taken. The bank charges interest at a fixed rate of 5% on the remaining amount owed at the end of each month.
 - (i) Show that the amount of money that Mr Lee still owe the bank at the end of n months is given by $\left[10000(1.05^n) 21(1.05^n 1)x\right]$.
 - (ii) How much should Mr Lee repay every month so that he can completely repay the bank by the 31st December 2016? Give your answers to the nearest cent.

Answer: (ii) \$690.20

Solutions available on next page...

[Solutions]

(ii) From 1st Jan 2015 to 31st Dec 2016, Mr Lee repays \$x for a total of 24 months, i.e. n=24

Amt owed at end of 24 months = $1.05^{24}(10000) - 21(1.05^{24}-1)x$ To completely repay the bank, amt owed = 0.

Ans: \$690.20.