Summary on Functions

(1) Rule of f means the expression of f.

(2) Domain of f means the set of input values of f.Range means the set of output values of f.Domain and range must be presented in proper set notation.

For example: $R_f = [0, \infty)$. For this set, 0 is included. $R_f = (2, 3)$ means 2 and 3 are not included in the set.

(3) Sketch the functions according to domain.

Your sketch should include the end-points, asymptotes and intersection with axes if any. Stationary points are included if it helps in finding the range of the function.

Caution: Do not just sketch the entire graph obtained using the GC.

	Inverse function f ⁻¹	Composite function fg
Exist?	Check 1 to 1. See # below on how to show f is 1 to 1.	$\operatorname{Check} R_g \subseteq D_f$
Rule	Let $y = f(x)$ and make x the subject. See example 1 on the next page.	Replace x in $f(x)$ by $g(x)$. See example 2 on the next page
Domain	Domain of f^{-1} = Range of f	Domain of fg = Domain of g
Range	Range of f ⁻¹ = Domain of f	 2 methods: (1) Sketch the graph of fg(x) based on the domain of fg and find range based on the graph. (2) Use R_g as domain of f and find the corresponding range of f using the graph of f See example 3 on the next page.
What if the function does not exist?	Restrict to a subset of the domain of f so that f is 1 to 1	Restrict x to a subset of domain of g so that $R_g \subseteq D_f$

To show 1 to 1 function.

Sketch the graph of f according to its domain and if it is 1 to 1, state that any horizontal line y = k cuts the graph of the function **at most one point**, therefore it is f is 1 to 1.

Relationships between f and f^{-1} and the line y = x

- The graphs of y = f(x) and $y = f^{-1}(x)$ are reflections of each other about the line y = x.
- $ff^{-1}(x) = x$, $x \in Domain of f^{-1}$ and $f^{-1}f(x) = x$, $x \in Domain of f$. These results can be quoted without proof and are always true no matter what function f is. The functions have the same rule but their domains may differ.

When asked to sketch $y = f^{-1}f(x)$, we should sketch the line y = x where $x \in Domain of f$.

Example 1: Find an expression for the inverse of f where $f(x) = x^2 + x - 1, x \le -\frac{1}{2}$.

To make x the subject for $y = x^2 + x - 1$.

Method 1: $x^2 + x - 1 - y = 0$ and use the formula $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ to write x in terms of y $x = \frac{-1 \pm \sqrt{1 - 4(-1 - y)}}{2} = \frac{-1 \pm \sqrt{5 + 4y}}{2}.$

Reject one of the expression using the domain of f.

- Since $x \le -\frac{1}{2}$, $x = \frac{-1 \sqrt{5 + 4y}}{2}$.
- Therefore, $f^{-1}(x) = \frac{-1 \sqrt{5 + 4x}}{2}$.
- **Method 2:** Complete the square for x.

$$y = x^{2} + x - 1 = \left(x + \frac{1}{2}\right)^{2} - \frac{5}{4} \Rightarrow \left(x + \frac{1}{2}\right)^{2} = y + \frac{5}{4} \Rightarrow x = -\frac{1}{2} \pm \sqrt{y + \frac{5}{4}}$$

Since
$$x \le -\frac{1}{2}$$
, $x = -\frac{1}{2} - \sqrt{y + \frac{5}{4}}$.

Therefore,
$$f^{-1}(x) = -\frac{1}{2} - \sqrt{x + \frac{5}{4}}$$
.

Example 2 Finding the composite function.

Given that $f(x) = x^2 - 1, x \in \mathbb{R}$ and $g(x) = \ln x, x \in \mathbb{R}$.

Find the rule of fg(x) and of gf(x).

$$fg(x) = f(g(x)) = f(\ln x) = (\ln x)^2 - 1$$

$$gf(x) = g(f(x)) = g(x^2 - 1) = ln(x^2 - 1)$$

Example 3 (find the range of composite function)

Given that $f(x) = x^2 + 2$, $x \in \mathbb{R}$ and $g(x) = \ln x$, $0 < x \le e$. Find the range of fg.

Method 1:

Sketch the graph of fg(x) based on the domain of fg and find range based on the graph.

$$fg(x) = f(\ln x) = (\ln x)^{2} + 2$$

$$Dfg = Dg = (0, e]$$

$$y = fg(x)$$

$$x = \lim_{x \to \infty} y = fg(x)$$

$$x = \lim_{x \to \infty} x = \lim_{$$

Method 2: Use $R_{\rm g}$ as domain of f and find the corresponding range of f using the graph of f.

