Completing the Squares and Quadratic Polynomials

Basic Notes:

In completing the squares, we will need to perform the following steps:
Step 1: Make sure that the coefficient of x^{2} is 1 after factorizing suitable constant; For example, $a x^{2}+b x+c=a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)$.

Step 2: Divide the coefficient of x (i.e., $\frac{b}{a}$) by 2 to obtain $\frac{b}{2 a}$;
Step 3: Add a copy of $\left(\frac{b}{2 a}\right)^{2}$ and subtract a copy of $\left(\frac{b}{2 a}\right)^{2}$ and finally convert the resulting expression into the form $a\left[(x+p)^{2}\right]+q$.

$$
\begin{aligned}
a x^{2}+b x+c=a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) & =a\left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\left(\frac{b}{2 a}\right)^{2}\right) \\
& =a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}\right] \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a} .
\end{aligned}
$$

Quadratic Equations

By the above identity, the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ becomes

$$
a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}\right]=0 .
$$

From this, we obtain the roots to be $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
The nature of the roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ depends on the value $b^{2}-4 a c$, which is called the discriminant of the equation.

The roots are categorized as follows:
(1) If $b^{2}-4 a c>0$, the two roots are real and distinct.
(2) If $b^{2}-4 a c=0$, the two roots are real and equal.
(3) If $b^{2}-4 a c<0$, the quadratic equation has no real roots

We conclude that the quadratic equation has real roots if and only if $b^{2}-4 a c \geq 0$.

Worksheet: Completing the Squares and Quadratic Polynomials

1. Complete the squares of the followings and state the maximum or minimum value of y :
(i) $y=x^{2}+2 x-3$
(ii) $y=-x^{2}+3 x-4$
(iii) $y=3 x^{2}+6 x+9$
(iv) $y=2 x^{2}-8 x+8$

Sketch the graphs for (i) and (ii).
2. Find a, b and c which satisfy the identity

$$
3 x^{2}+4 x-1 \equiv a(x-1)(x-2)+b(x-1)+c
$$

3. Find constants a, b and c such that $x^{2}-7 x+9 \equiv a(x-b)^{2}+c$.
4. Express $1+x-2 x^{2}$ in the form $b-c(x-a)^{2}$ and find the maximum value of the expression.
5. Find the possible values of k if $x^{2}+(k-3) x+4=0$ has
(i) real and distinct roots
(ii) equal roots.
6. Find the range of values of k for which the equation $x^{2}+2(k-1) x+k-1=0$ has no real roots.

Answers:

(1) (i) $(x+1)^{2}-4$; min $y=-4$; (ii) $-\left(x-\frac{3}{2}\right)^{2}-\frac{7}{4}$; $\max y=-\frac{7}{4}$;
(iii) $3(x+1)^{2}+6 ; \min y=6$; (iv) $2(x-2)^{2} ; \min y=0$.
(2) $a=3, b=13, c=6$; (3) $a=1, b=\frac{7}{2}, c=-\frac{13}{4}$; (4) $\frac{9}{8}-2\left(x-\frac{1}{4}\right)^{2}, \frac{9}{8}$;
(5) (i) $k>7$ or $k<-1$ (ii) $k=7,-1$.; (6) $1<k<2$.

