Polynomial \& Long Division

Basic Notes:

To divide $P(x)=3 x^{3}+x-4$ by $S(x)=x+2$, we arrange the dividend $P(x)$ and the divisor $S(x)$ in the following way:

$$
x + 2 \longdiv { 3 x ^ { 3 } \quad + x - 4 }
$$

Note that an empty space is left for the missing x^{2} in $P(x)$.

Dividing the first term of the dividend (i.e., $3 x^{3}$) by the first term of the divisor (i.e., x) yields the term $3 x^{2}$. We then multiply $3 x^{2}$ by $x+2$ and subtract the product from the dividend as follows:

$$
\begin{array}{r}
x + 2 \longdiv { 3 x ^ { 2 } } \begin{array} { l }
{ \frac { 3 x ^ { 3 } } { } + x - 4 } \\
{ } \\
{ \quad - 6 x ^ { 2 } + 6 x ^ { 2 } + x - 4 }
\end{array}
\end{array}
$$

Now we divide the resulting $-6 x^{2}+x-4$ by $x+2$ and proceed as before to get the following:

$$
\begin{array}{r}
x+2 \begin{array}{rr}
3 x^{2} & -6 x+13 \\
3 x^{3} & +x-4 \\
3 x^{3}+6 x^{2}
\end{array} \\
\begin{array}{r}
-6 x^{2}+x-4 \\
-6 x^{2}-12 x
\end{array} \\
\hline \begin{array}{r}
13 x-4 \\
13 x+26
\end{array} \\
\hline-30
\end{array}
$$

The procedure ends at this point since the remainder (-30) is 1 degree lower than the divisor $x+2$.
The above result may be expressed as

$$
\frac{3 x^{3}-6 x+13}{x+2}=\left(3 x^{2}-6 x+13\right)-\frac{30}{x+2} .
$$

Worksheet: Polynomial \& Long Division

1(i) Find the coefficient of the x term and the constant term in the product $\left(2 x^{3}+x^{2}-4 x+1\right)\left(x^{2}-5 x+3\right)$.
(ii) Find the coefficient of the x^{3} term in the product $\left(2 x^{2}-x+7\right)\left(x^{2}+7 x-3\right)$.
(iii) Find the coefficient of the x^{4} term in the product $\left(-3 x^{4}+7 x^{2}+1\right)\left(3 x^{2}-7\right)$.
2. In each of the following, find the quotient and remainder when $P(x)$ is divided by $D(x)$:
(i) $P(x)=4 x^{2}+3 x-7, D(x)=x-2$;
(ii) $P(x)=x^{5}+x^{4}+x^{3}+x^{2}+1, D(x)=x^{2}-1$;
(iii) $P(x)=x^{4}+9 x^{3}+1, D(x)=x^{2}+x+1$
3. Solve the equation $x^{4}+5 x^{2}-2=0$, giving your answers to 3 significant figures.

Answers:

(1) (i) -17 ; 3 ; (ii) 13 ; (iii) 42
(2)(i) $4 x+11,15$; (ii) $x^{3}+x^{2}+2 x+2,2 x+3$; (iii) $x^{2}+8 x-9, x+10$
(3) ± 0.610

