APGP Word Problems

For self-practice. Solutions can be found at www.ayec.com.sg under useful resources.
1(a) On 1 January 2014, Mr. Spendalot uses a credit card to borrow $\$ 2000$ from a bank, at an interest rate of 2% a month. He repays the bank $\$ 50$ on the $10^{\text {th }}$ of each month, starting from January. Interest is always charged on the balance at the end of each month.
(i) Find the outstanding amount at the end of $n^{\text {th }}$ month.
(ii) How many months does he take to repay the entire loan?
(b) Mr Thrift makes use of a special offer from a bank to obtain an interest-free loan of $\$ 2000$. He decides to pay $\$ 50$ in the first month. On the first day of each subsequent month, he pays $\$ 10$ more than in the previous month. How many complete months would it take for him to fully repay the debt?
2. A bank offers a cash loan of $\$ 10,000$. To make the loan attractive, the bank offers the following repayment plan.
Repay a fixed amount of $\$ x$ to the bank on the $15^{\text {th }}$ of every month. At the end of each month, the bank will add an interest at a fixed rate of 5% on the remaining amount owed. When the amount owed is less than $\$ x$, only the balance will have to be paid on the $15^{\text {th }}$ of the following month.
John takes up the loan on $1^{\text {st }}$ October 2012.
(i) How much will he owe the bank on $31^{\text {st }}$ October 2012 after the interest has been added? Leave your answer in terms of x.
(ii) Show that the total amount of money John owes the bank at the end of n months is given by $\$\left[10000\left(1.05^{n}\right)-21 x\left(1.05^{n}-1\right)\right]$.
(iii) If John repays $\$ 500$ every month to the bank, find the total number of months for the loan to be repaid fully.
3. A fund is established with a single deposit of $\$ 2500$ at the beginning of 2011 to provide an annual bursary of $\$ 150$. The fund earns interest at 3.5% per annum, paid at the end of each year.
If the first bursary is awarded at the end of 2011 after interest is earned, show that at the end of n years, the amount (in dollars) remaining in the fund is

$$
\frac{-12500}{7}(1.035)^{n}+\frac{30000}{7}
$$

When is the last year that the bursary can be awarded?

Solutions to Q1

(a)
(i) Balance at end of 1 month $=1.02(2000-50)$

Balance at end of 2 months $=1.02[1.02(2000-50)-50]=1.02^{2}(2000)-50\left(1.02^{2}+1.02\right)$
Balance at end of 2 months
$=1.02\left[1.02^{2}(2000)-50\left(1.02^{2}+1.02\right)-50\right]=1.02^{3}(2000)-50\left(1.02^{3}+1.02^{2}+1.02\right)$
Balance at end of n months
$=1.02^{n}(2000)-50\left(1.02^{n}+1.02^{n-1} \ldots+1.02\right)$
$=1.02^{n}(2000)-50\left(\frac{1.02\left(1.02^{n}-1\right)}{1.02-1}\right)$
$=1.02^{n}(2000)-2500\left(1.02\left(1.02^{n}-1\right)\right)$
$=1.02^{n}(2000)-2550\left(\left(1.02^{n}-1\right)\right)$
$=1.02^{n}(2000)-1.02^{n}(2550)+2550$
$=2550-1.02^{n}(550)$
(ii) loan repaid \Rightarrow balance $\leq 0 \Rightarrow 2550-1.02^{n}(550) \leq 0 \Rightarrow n \geq 77.46$ so he takes 78 months.

(b)

Let n be the no. of months. Then
$\frac{n}{2}(2 a+(n-1) d) \geq 2000$
$\Rightarrow \frac{n}{2}(100+(n-1) 10) \geq 2000$
$\Rightarrow \frac{n}{2}(90+10 n) \geq 2000$
$\Rightarrow n^{2}+9 n-400 \geq 0$
Solving, $n \leq-25, n \geq 16$.
16 complete months to fully repay the debt.

Solutions to Q2

(i)

On the $31^{\text {st }}$ Oct 2012 (at the end of $1^{\text {st }}$ month), the amount John owes the bank $=\$[(10000-x)(1.05)]$ or $=\$[10000(1.05)-x(1.05)]$
(ii)

At the end of $2^{\text {nd }}$ month, the amount John owes the bank
$=\$[10000(1.05)-x(1.05)-x](1.05)$
$=\$\left[10000(1.05)^{2}-x(1.05)^{2}-x(1.05)\right]$
At the end of $3{ }^{\text {rd }}$ month, the amount John owes the bank

$$
\begin{aligned}
& =\$\left[10000(1.05)^{2}-x(1.05)^{2}-x(1.05)-x\right](1.05) \\
& =\$\left[10000(1.05)^{3}-x(1.05)^{3}-x(1.05)^{2}-x(1.05)\right]
\end{aligned}
$$

At the end of nth month, the amount John owes the bank

$$
\begin{aligned}
& =\$\left[10000(1.05)^{n}-x(1.05)^{n}-\cdots-x(1.05)^{2}-x(1.05)\right] \\
& =\$\left[10000(1.05)^{n}-x\left[(1.05)^{n}+\ldots+(1.05)^{2}+(1.05)\right]\right] \\
& =\$\left[10000(1.05)^{n}-x \frac{1.05\left(1.05^{n}-1\right)}{1.05-1}\right] \\
& =\$\left[10000(1.05)^{n}-21 x\left(1.05^{n}-1\right)\right]
\end{aligned}
$$

(ii) Let $x=500$, amount owed by end of the nth months $=10000(1.05)^{n}-21(500)\left(1.05^{n}-1\right)$
For the loan to be repaid fully, amount owed should be 0 .
$10000(1.05)^{n}-21(500)\left(1.05^{n}-1\right)=0$
$10000(1.05)^{n}-10500\left(1.05^{n}\right)+10500=0$
$10500=500\left(1.05^{n}\right)$
$1.05^{n}=21$
$n=\frac{\ln 21}{\ln 1.05}=62.4$
At $\mathrm{n}=62$, the amount owed is not 0 yet. So need 63 months.
\therefore the number of complete months required is 63 .

Solutions to Q3

Amount of money in fund after giving out n years of bursary:
$n=1: \quad(1.035)(2500)-150$
$n=2: \quad(1.035)[(1.035) 2500-150]-150$

$$
=(1.035)^{2}(2500)-(1.035) 150-150
$$

at nth year: $\quad(1.035)^{n}(2500)-(1.035)^{n-1}(150)-(1.035)^{n-2}(150)-\ldots-150$

$$
\begin{aligned}
& =(1.035)^{n}(2500)-(150)\left[1+(1.035)+(1.035)^{2}+\ldots+(1.035)^{n-1}\right] \\
& =(1.035)^{n}(2500)-150\left(\frac{1.035^{n}-1}{0.035}\right) \\
& =(1.035)^{n}(2500)-\frac{150}{0.035}\left((1.035)^{n}-1\right) \\
& =(1.035)^{n}(2500)-\frac{30000}{7}\left((1.035)^{n}-1\right) \\
& =(1.035)^{n}\left[2500-\frac{30000}{7}\right]+\frac{30000}{7} \\
& =-\frac{12500}{7}(1.035)^{n}+\frac{30000}{7}
\end{aligned}
$$

Amount of money in fund after giving out n years of bursary ≥ 0

$$
\begin{aligned}
& \frac{30000}{7}-\frac{12500}{7}(1.035)^{n} \geq 0 \\
& (1.035)^{n} \leq \frac{30000}{12500} \\
& n \leq 25.44 \\
& n=25 \text { years }
\end{aligned}
$$

2011 - first year and $2035-25^{\text {th }}$ year Last year is 2035 .

