Summary for APGP

	Arithmetic Progression (AP)	Geometric Progression (GP)
Formula for term u_{n}	$u_{n}=a+(n-1) d$	$u_{n}=a r^{n-1}$
Formula for sum S_{n}	$\begin{aligned} S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\ & =\frac{n}{2}(a+l) \end{aligned}$	$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \text { or } \frac{a\left(r^{n}-1\right)}{r-1}$
Is sum (series) convergent?	$n \rightarrow \infty, S_{n} \rightarrow \infty \text { or }-\infty$ [Except for special case when $d=0$.] Arithmetic series is not convergent.	$\|r\|<1 \Leftrightarrow S_{\infty}=\frac{a}{1-r} \text { exist } \Leftrightarrow$ Geometric series is convergent
Show $\left\{u_{n}\right\}$ follow AP or GP	Show $u_{n}-u_{n-1}=d$ where d is independent of n.	Show $\frac{u_{n}}{u_{n-1}}=r$ where r is independent of n.
Special Cases	- When $d=0$, AP is a constant sequence $\{a, a, a, \ldots\}$. - When $d>0$, AP is an increasing sequence. - When $d<0$, AP is a decreasing sequence.	- When $r=1$, GP is a constant sequence $\{a, a, a, \ldots\}$. - When $r>0$, the terms are of the same sign. - When $r<0$, the signs of the terms are alternating.

Word Problem

1. Mr Lee took up a loan of $\$ 10000$ on $1^{\text {st }}$ January 2015 from a bank and repays the bank $\$ x$ in the middle of every month starting from the month the loan is taken. The bank charges interest at a fixed rate of 5% on the remaining amount owed at the end of each month.
(i) Show that the amount of money that Mr Lee still owe the bank at the end of n months is given by $\$\left[10000\left(1.05^{n}\right)-21\left(1.05^{n}-1\right) x\right]$.
(ii) How much should Mr Lee repay every month so that he can completely repay the bank by the $31^{\text {st }}$ December 2016? Give your answers to the nearest cent.

Answer: (ii) $\$ 690.20$
Solutions available on next page...
[Solutions]
(i) At the end of list meh and moth $3 r d m t h$

(ii) From $1^{\text {st }}$ Jan 2015 to $31^{\text {s+ }}$ Dec 2016, Mr Lee repays $\$ x$ for a total of 24 months, ie. $n=24$

Amt owed at end of 24 months $=1.05^{24}(10000)-21\left(1.05^{24}-1\right) x$ To completely repay the bank, amt owed $=0$.

$$
\begin{aligned}
& \therefore 1.05^{24}(10000)-21\left(1.05^{24}-1\right) x=0 \\
& x=690.1991 \\
& \approx 690.20
\end{aligned}
$$

Ans: $\$ 690 \cdot 20$.

