Summary on Functions

(1) Rule of f means the expression of f.
(2) Domain of f means the set of input values of f.

Range means the set of output values of f.
Domain and range must be presented in proper set notation.
For example: $\mathrm{R}_{\mathrm{f}}=[0, \infty)$. For this set, 0 is included.
$\mathrm{R}_{\mathrm{f}}=(2,3)$ means 2 and 3 are not included in the set.
(3) Sketch the functions according to domain.

Your sketch should include the end-points, asymptotes and intersection with axes if any. Stationary points are included if it helps in finding the range of the function.

Caution: Do not just sketch the entire graph obtained using the GC.

	Inverse function f^{-1}	Composite function fg
Exist?	Check 1 to 1 . See \# below on how to show f is 1 to 1 .	Check $\mathrm{R}_{\mathrm{g}} \subseteq \mathrm{D}_{\mathrm{f}}$
Rule	Let $y=\mathrm{f}(x)$ and make x the subject. See example 1 on the next page.	Replace x in $\mathrm{f}(x)$ by $\mathrm{g}(x)$. See example 2 on the next page
Domain	Domain of $\mathrm{f}^{-1}=$ Range of f	Domain of $\mathrm{fg}=$ Domain of g
Range	Range of $\mathrm{f}^{-1}=$ Domain of f	2 methods: (1) Sketch the graph of $\operatorname{fg}(x)$ based on the domain of fg and find range based on the graph. (2) Use R_{g} as domain of f and find the corresponding range of f using the graph of f See example 3 on the next page.
What if the function does not exist?	Restrict to a subset of the domain of f so that f is 1 to 1	Restrict x to a subset of domain of g so that $\mathrm{R}_{\mathrm{g}} \subseteq \mathrm{D}_{\mathrm{f}}$

\# To show 1 to 1 function.

Sketch the graph of f according to its domain and if it is 1 to 1 , state that any horizontal line $y=k$ cuts the graph of the function at most one point, therefore it is f is 1 to 1 .

Relationships between f and f^{-1} and the line $y=x$

- The graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ are reflections of each other about the line $y=x$.
- $\mathrm{ff}^{-1}(x)=x, x \in$ Domain of f^{-1} and $\mathrm{f}^{-1} \mathrm{f}(x)=x, x \in$ Domain of f.

These results can be quoted without proof and are always true no matter what function f is.
The functions have the same rule but their domains may differ.
When asked to sketch $y=\mathrm{f}^{-1} \mathrm{f}(x)$, we should sketch the line $y=x$ where $x \in$ Domain of f .

Example 1: Find an expression for the inverse of f where $\mathrm{f}(x)=x^{2}+x-1, x \leq-\frac{1}{2}$.
To make x the subject for $y=x^{2}+x-1$.
Method 1: $\quad x^{2}+x-1-y=0$ and use the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ to write x in terms of y

$$
x=\frac{-1 \pm \sqrt{1-4(-1-y)}}{2}=\frac{-1 \pm \sqrt{5+4 y}}{2} .
$$

Reject one of the expression using the domain of f.
Since $x \leq-\frac{1}{2}, x=\frac{-1-\sqrt{5+4 y}}{2}$.
Therefore, $\mathrm{f}^{-1}(x)=\frac{-1-\sqrt{5+4 x}}{2}$.

Method 2: \quad Complete the square for x.

$$
y=x^{2}+x-1=\left(x+\frac{1}{2}\right)^{2}-\frac{5}{4} \Rightarrow\left(x+\frac{1}{2}\right)^{2}=y+\frac{5}{4} \Rightarrow x=-\frac{1}{2} \pm \sqrt{y+\frac{5}{4}}
$$

Since $x \leq-\frac{1}{2}, x=-\frac{1}{2}-\sqrt{y+\frac{5}{4}}$.
Therefore, $\mathrm{f}^{-1}(x)=-\frac{1}{2}-\sqrt{x+\frac{5}{4}}$.

Example 2 Finding the composite function.

Given that $\mathrm{f}(x)=x^{2}-1, x \in \mathbb{R}$ and $\mathrm{g}(x)=\ln x, x \in \mathbb{R}$.
Find the rule of $\mathrm{fg}(x)$ and of $\operatorname{gf}(x)$.
$\mathrm{fg}(x)=\mathrm{f}(\mathrm{g}(x))=\mathrm{f}(\ln x)=(\ln x)^{2}-1$
$\operatorname{gf}(x)=\mathrm{g}(\mathrm{f}(x))=\mathrm{g}\left(x^{2}-1\right)=\ln \left(x^{2}-1\right)$

Example 3 (find the range of composite function)
Given that $\mathrm{f}(x)=x^{2}+2, x \in \mathbb{R}$ and $\mathrm{g}(x)=\ln x, 0<x \leq e$. Find the range of fg .
Method 1:
Sketch the graph of $\operatorname{fg}(x)$ based on the domain of $f g$ and find range based on the graph.

$$
\begin{gathered}
f g(x)=f(\ln x)=(\ln x)^{2}+2 \\
D_{f g}=D_{g}=(0, e] \\
{ }_{\Uparrow}^{y} \quad y=f g(x) \ldots
\end{gathered}
$$

Method 2: Use R_{g} as domain of f and find the corresponding range of f using the graph of f.

